Solution shift 9:

- - Note that as $K(\beta)/K$ is Kummer, $|Kum(K(\beta)/K)| = |Gal(K(\beta)/K)|$ & $|Gal(K(\beta)/K)| = |CK(\beta): K] = n$ therefore $|Kum(K(\beta)/K)| = n$. Now $1,\beta,\beta^2,-,\beta^{n-1}$ give n distinct classes in $Kum(K(\beta)/K)$, however α also gives a non-trivial class in $Kum(K(\beta)/K)$ therefore $|C\alpha| = |C\beta^k|$ in $|Kum(K(\beta)/K|)$. Recall that there is an injective morphism $|Kum(K(\beta)/K|)| + |K^*/(K^*)| + |K^*/(K^*)|$

($\chi y t$). $(y t)^2 (\chi t^2)^2 = \chi^4 y^8 t^8 \in (K^{\chi})^4$ Therefore either the subgrap generated by $\chi y t^2$, $y t^2$ is equal to the one generated by $\chi y t^2$, $y t^2$, χt^2 or it has ratex 2. One can see that these graps are not equal by Snawing that χt^2 is not contained in the subgrap generated by $\chi y t^2$, $y t^2$ therefore |f(Kum(L/K)| = 32 = [L:K].

- As before this is a Kummer extension and the degree of the extension is given by the number of elements $p_1^{\alpha_1} p_2^{\alpha_2} p_2^{\alpha_2} \dots p_n^{\alpha_n} 1$ a; $\epsilon 10.11? / (Q^{\times})^2$ but $p_2^{\alpha_1} \dots p_n^{\alpha_n}$ with a; $\epsilon 10.12$ is never a square so the number of elements in this set is 2^n .
- Let $\tau \in \text{Aut}(\overline{\mathbb{Q}})$ be a non-trivial torsion element and let $G = \langle \tau \rangle$ be the subgroup of $\text{Aut}(\overline{\mathbb{Q}})$ generated by τ . Then $[\overline{\mathbb{Q}}: \overline{\mathbb{Q}}^G] < \infty$ in fact $[\overline{\mathbb{Q}}: \overline{\mathbb{Q}}^G] = [G]$. By $\text{Artin-Scherier} \ \overline{\mathbb{Q}} = \overline{\mathbb{Q}}^G(i)$ where $i^2 = -1$. Therefore $[\overline{\mathbb{Q}}: \overline{\mathbb{Q}}^G] = [\overline{\mathbb{Q}}^G(i): \overline{\mathbb{Q}}^G] = 2 \Rightarrow |G| = 2$ $\Rightarrow \tau$ has order 2.